Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Binary Artificial Bee Colony Algorithm (2003.11641v2)

Published 12 Mar 2020 in cs.NE and cs.AI

Abstract: The Artificial Bee Colony (ABC) algorithm is an evolutionary optimization algorithm based on swarm intelligence and inspired by the honey bees' food search behavior. Since the ABC algorithm has been developed to achieve optimal solutions by searching in the continuous search space, modification is required to apply this method to binary optimization problems. In this paper, we improve the ABC algorithm to solve binary optimization problems and call it the improved binary Artificial Bee Colony (ibinABC). The proposed method consists of an update mechanism based on fitness values and processing different number of decision variables. Thus, we aim to prevent the ABC algorithm from getting stuck in a local minimum by increasing its exploration ability. We compare the ibinABC algorithm with three variants of the ABC and other meta-heuristic algorithms in the literature. For comparison, we use the wellknown OR-Library dataset containing 15 problem instances prepared for the uncapacitated facility location problem. Computational results show that the proposed method is superior to other methods in terms of convergence speed and robustness. The source code of the algorithm will be available on GitHub after reviewing process

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Rafet Durgut (3 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.