Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

From Sine kernel to Poisson statistics (1407.5402v2)

Published 21 Jul 2014 in math.PR and cond-mat.stat-mech

Abstract: We study the Sine$\beta$ process introduced in [B. Valk\'o and B. Vir\'ag. Invent. math. (2009)] when the inverse temperature $\beta$ tends to 0. This point process has been shown to be the scaling limit of the eigenvalues point process in the bulk of $\beta$-ensembles and its law is characterized in terms of the winding numbers of the Brownian carrousel at different angular speeds. After a careful analysis of this family of coupled diffusion processes, we prove that the Sine$\beta$ point process converges weakly to a Poisson point process on $\mathbb{R}$. Thus, the Sine$_\beta$ point processes establish a smooth crossover between the rigid clock (or picket fence) process (corresponding to $\beta=\infty$) and the Poisson process.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.