Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stein meets Malliavin in normal approximation (1407.5172v2)

Published 19 Jul 2014 in math.PR

Abstract: Stein's method is a method of probability approximation which hinges on the solution of a functional equation. For normal approximation the functional equation is a first order differential equation. Malliavin calculus is an infinite-dimensional differential calculus whose operators act on functionals of general Gaussian processes. Nourdin and Peccati (2009) established a fundamental connection between Stein's method for normal approximation and Malliavin calculus through integration by parts. This connection is exploited to obtain error bounds in total variation in central limit theorems for functionals of general Gaussian processes. Of particular interest is the fourth moment theorem which provides error bounds of the order $\sqrt{\mathbb{E}(F_n4)-3}$ in the central limit theorem for elements ${F_n}_{n\ge 1}$ of Wiener chaos of any fixed order such that $\mathbb{E}(F_n2) = 1$. This paper is an exposition of the work of Nourdin and Peccati with a brief introduction to Stein's method and Malliavin calculus. It is based on a lecture delivered at the Annual Meeting of the Vietnam Institute for Advanced Study in Mathematics in July 2014.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)