Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A restriction estimate using polynomial partitioning (1407.1916v3)

Published 8 Jul 2014 in math.CA

Abstract: If $S$ is a smooth compact surface in $\mathbb{R}3$ with strictly positive second fundamental form, and $E_S$ is the corresponding extension operator, then we prove that for all $p > 3.25$, $| E_S f|{Lp(\mathbb{R}3)} \le C(p,S) | f |{L\infty(S)}$. The proof uses polynomial partitioning arguments from incidence geometry.

Summary

We haven't generated a summary for this paper yet.