Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fourier restriction in low fractal dimensions (1905.09513v2)

Published 23 May 2019 in math.CA

Abstract: Let $S \subset \Bbb Rn$ be a smooth compact hypersurface with a strictly positive second fundamental form, $E$ be the Fourier extension operator on $S$, and $X$ be a Lebesgue measurable subset of $\Bbb Rn$. If $X$ contains a ball of each radius, then the problem of determining the range of exponents $(p,q)$ for which the estimate $| Ef |{Lq(X)} \leq C | f |{Lp(S)}$ holds is equivalent to the restriction conjecture. In this paper, we study the estimate under the following assumption on the set $X$: there is a number $0 < \alpha \leq n$ such that $|X \cap B_R| \leq c \, R\alpha$ for all balls $B_R$ in $\Bbb Rn$ of radius $R \geq 1$. On the left-hand side of this estimate, we are integrating the function $|Ef(x)|q$ against the measure $\chi_X dx$. Our approach consists of replacing the characteristic function $\chi_X$ of $X$ by an appropriate weight function $H$, and studying the resulting estimate in three different regimes: small values of $\alpha$, intermediate values of $\alpha$, and large values of $\alpha$. In the first regime, we establish the estimate by using already available methods. In the second regime, we prove a weighted H\"{o}lder-type inequality that holds for general non-negative Lebesgue measurable functions on $\Bbb Rn$, and combine it with the result from the first regime. In the third regime, we borrow a recent fractal Fourier restriction theorem of Du and Zhang and combine it with the result from the second regime. In the opposite direction, the results of this paper improve on the Du-Zhang theorem in the range $0 < \alpha < n/2$.

Summary

We haven't generated a summary for this paper yet.