Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Congruences involving $g_n(x)=\sum_{k=0}^n\binom nk^2\binom{2k}kx^k$ (1407.0967v8)

Published 3 Jul 2014 in math.NT and math.CO

Abstract: Define $g_n(x)=\sum_{k=0}n\binom nk2\binom{2k}kxk$ for $n=0,1,2,...$. Those numbers $g_n=g_n(1)$ are closely related to Ap\'ery numbers and Franel numbers. In this paper we establish some fundamental congruences involving $g_n(x)$. For example, for any prime $p>5$ we have $$\sum_{k=1}{p-1}\frac{g_k(-1)}{k}\equiv 0\pmod{p2}\quad{and}\quad\sum_{k=1}{p-1}\frac{g_k(-1)}{k2}\equiv 0\pmod p.$$ This is similar to Wolstenholme's classical congruences $$\sum_{k=1}{p-1}\frac1k\equiv0\pmod{p2}\quad{and}\quad\sum_{k=1}{p-1}\frac{1}{k2}\equiv0\pmod p$$ for any prime $p>3$.

Summary

We haven't generated a summary for this paper yet.