2000 character limit reached
Congruences for Franel numbers (1112.1034v11)
Published 5 Dec 2011 in math.NT and math.CO
Abstract: The Franel numbers given by $f_n=\sum_{k=0}n\binom{n}{k}3$ ($n=0,1,2,\ldots$) play important roles in both combinatorics and number theory. In this paper we initiate the systematic investigation of fundamental congruences for the Franel numbers. We mainly establish for any prime $p>3$ the following congruences: \begin{align*}\sum_{k=0}{p-1}(-1)kf_k&\equiv\left(\frac p3\right)\ \ (\mbox{mod}\ p2), \ \sum_{k=0}{p-1}(-1)k\,kf_k&\equiv-\frac 23\left(\frac p3\right)\ \ (\mbox{mod}\ p2), \ \sum_{k=1}{p-1}\frac{(-1)k}kf_k &\equiv0\ \ (\mbox{mod}\ p2), \ \sum_{k=1}{p-1}\frac{(-1)k}{k2}f_k&\equiv0\ \ (\mbox{mod}\ p). \end{align*}