Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering an active subspace in a single-diode solar cell model (1406.7607v3)

Published 30 Jun 2014 in math.NA

Abstract: Predictions from science and engineering models depend on the values of the model's input parameters. As the number of parameters increases, algorithmic parameter studies like optimization or uncertainty quantification require many more model evaluations. One way to combat this curse of dimensionality is to seek an alternative parameterization with fewer variables that produces comparable predictions. The active subspace is a low-dimensional linear subspace defined by important directions in the model's input space; input perturbations along these directions change the model's prediction more, on average, than perturbations orthogonal to the important directions. We describe a method for checking if a model admits an exploitable active subspace, and we apply this method to a single-diode solar cell model with five input parameters. We find that the maximum power of the solar cell has a dominant one-dimensional active subspace, which enables us to perform thorough parameter studies in one dimension instead of five.

Summary

We haven't generated a summary for this paper yet.