Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global sensitivity metrics from active subspaces (1510.04361v2)

Published 15 Oct 2015 in math.NA

Abstract: Predictions from science and engineering models depend on several input parameters. Global sensitivity analysis quantifies the importance of each input parameter, which can lead to insight into the model and reduced computational cost; commonly used sensitivity metrics include Sobol' total sensitivity indices and derivative-based global sensitivity measures. Active subspaces are an emerging set of tools for identifying important directions in a model's input parameter space; these directions can be exploited to reduce the model's dimension enabling otherwise infeasible parameter studies. In this paper, we develop global sensitivity metrics called activity scores from the active subspace, which yield insight into the important model parameters. We mathematically relate the activity scores to established sensitivity metrics, and we discuss computational methods to estimate the activity scores. We show two numerical examples with algebraic functions taken from simplified engineering models. For each model, we analyze the active subspace and discuss how to exploit the low-dimensional structure. We then show that input rankings produced by the activity scores are consistent with rankings produced by the standard metrics.

Summary

We haven't generated a summary for this paper yet.