Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RAPID: Rapidly Accelerated Proximal Gradient Algorithms for Convex Minimization (1406.4445v2)

Published 13 Jun 2014 in stat.ML, cs.LG, and math.OC

Abstract: In this paper, we propose a new algorithm to speed-up the convergence of accelerated proximal gradient (APG) methods. In order to minimize a convex function $f(\mathbf{x})$, our algorithm introduces a simple line search step after each proximal gradient step in APG so that a biconvex function $f(\theta\mathbf{x})$ is minimized over scalar variable $\theta>0$ while fixing variable $\mathbf{x}$. We propose two new ways of constructing the auxiliary variables in APG based on the intermediate solutions of the proximal gradient and the line search steps. We prove that at arbitrary iteration step $t (t\geq1)$, our algorithm can achieve a smaller upper-bound for the gap between the current and optimal objective values than those in the traditional APG methods such as FISTA, making it converge faster in practice. In fact, our algorithm can be potentially applied to many important convex optimization problems, such as sparse linear regression and kernel SVMs. Our experimental results clearly demonstrate that our algorithm converges faster than APG in all of the applications above, even comparable to some sophisticated solvers.

Citations (9)

Summary

We haven't generated a summary for this paper yet.