Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian matrix completion: prior specification (1406.1440v3)

Published 5 Jun 2014 in stat.ML, math.ST, stat.CO, and stat.TH

Abstract: Low-rank matrix estimation from incomplete measurements recently received increased attention due to the emergence of several challenging applications, such as recommender systems; see in particular the famous Netflix challenge. While the behaviour of algorithms based on nuclear norm minimization is now well understood, an as yet unexplored avenue of research is the behaviour of Bayesian algorithms in this context. In this paper, we briefly review the priors used in the Bayesian literature for matrix completion. A standard approach is to assign an inverse gamma prior to the singular values of a certain singular value decomposition of the matrix of interest; this prior is conjugate. However, we show that two other types of priors (again for the singular values) may be conjugate for this model: a gamma prior, and a discrete prior. Conjugacy is very convenient, as it makes it possible to implement either Gibbs sampling or Variational Bayes. Interestingly enough, the maximum a posteriori for these different priors is related to the nuclear norm minimization problems. We also compare all these priors on simulated datasets, and on the classical MovieLens and Netflix datasets.

Citations (19)

Summary

We haven't generated a summary for this paper yet.