Phase reduction approach to synchronization of spatiotemporal rhythms in reaction-diffusion systems (1406.0274v1)
Abstract: Reaction-diffusion systems can describe a wide class of rhythmic spatiotemporal patterns observed in chemical and biological systems, such as circulating pulses on a ring, oscillating spots, target waves, and rotating spirals. These rhythmic dynamics can be considered limit cycles of reaction-diffusion systems. However, the conventional phase-reduction theory, which provides a simple unified framework for analyzing synchronization properties of limit-cycle oscillators subjected to weak forcing, has mostly been restricted to low-dimensional dynamical systems. Here, we develop a phase-reduction theory for stable limit-cycle solutions of infinite-dimensional reaction-diffusion systems. By generalizing the notion of isochrons to functional space, the phase sensitivity function - a fundamental quantity for phase reduction - is derived. For illustration, several rhythmic dynamics of the FitzHugh-Nagumo model of excitable media are considered. Nontrivial phase response properties and synchronization dynamics are revealed, reflecting their complex spatiotemporal organization. Our theory will provide a general basis for the analysis and control of spatiotemporal rhythms in various reaction-diffusion systems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.