Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Loose Legendrian and Pseudo-Legendrian Knots in 3-Manifolds (1405.5725v3)

Published 22 May 2014 in math.GT and math.SG

Abstract: We prove a complete classification theorem for loose Legendrian knots in an oriented 3-manifold, generalizing results of Dymara and Ding-Geiges. Our approach is to classify knots in a $3$-manifold $M$ that are transverse to a nowhere-zero vector field $V$ up to the corresponding isotopy relation. Such knots are called $V$-transverse. A framed isotopy class is simple if any two $V$-transverse knots in that class which are homotopic through $V$-transverse immersions are $V$-transverse isotopic. We show that all knot types in $M$ are simple if any one of the following three conditions hold: $1.$ $M$ is closed, irreducible and atoroidal; or $2.$ the Euler class of the $2$-bundle $V{\perp}$ orthogonal to $V$ is a torsion class, or $3.$ if $V$ is a coorienting vector field of a tight contact structure. Finally, we construct examples of pairs of homotopic knot types such that one is simple and one is not. As a consequence of the $h$-principle for Legendrian immersions, we also construct knot types which are not Legendrian simple.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube