Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stein-Malliavin Approximations for Nonlinear Functionals of Random Eigenfunctions on ${\mathbb{S}}^{d}$ (1405.3449v1)

Published 14 May 2014 in math.PR

Abstract: We investigate Stein-Malliavin approximations for nonlinear functionals of geometric interest of Gaussian random eigenfunctions on the unit $d$ -dimensional sphere ${\mathbb{S}}{d},$ $d\geq 2.$ All our results are established in the high energy limit, i.e. for eigenfunctions corresponding to growing eigenvalues. More precisely, we provide an asymptotic analysis for the variance of random eigenfunctions, and also establish rates of convergence for various probability metrics for Hermite subordinated processes, arbitrary polynomials of finite order and square integral nonlinear transforms; the latter, for instance, allows to prove a quantitative Central Limit Theorem for the excursion area. Some related issues were already considered in the literature for the $2$-dimensional case ${\mathbb{S}}{2}$; our results are new or improve the existing bounds even for this special case. Proofs are based on the asymptotic analysis of moments of all order for Gegenbauer polynomials, and make extensive use of the recent literature on so-called fourth-moment theorems by Nourdin and Peccati.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.