Big Data Analytics for QoS Prediction Through Probabilistic Model Checking (1405.0327v1)
Abstract: As competitiveness increases, being able to guaranting QoS of delivered services is key for business success. It is thus of paramount importance the ability to continuously monitor the workflow providing a service and to timely recognize breaches in the agreed QoS level. The ideal condition would be the possibility to anticipate, thus predict, a breach and operate to avoid it, or at least to mitigate its effects. In this paper we propose a model checking based approach to predict QoS of a formally described process. The continous model checking is enabled by the usage of a parametrized model of the monitored system, where the actual value of parameters is continuously evaluated and updated by means of big data tools. The paper also describes a prototype implementation of the approach and shows its usage in a case study.