Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ARRQP: Anomaly Resilient Real-time QoS Prediction Framework with Graph Convolution (2310.02269v1)

Published 22 Sep 2023 in cs.LG

Abstract: In the realm of modern service-oriented architecture, ensuring Quality of Service (QoS) is of paramount importance. The ability to predict QoS values in advance empowers users to make informed decisions. However, achieving accurate QoS predictions in the presence of various issues and anomalies, including outliers, data sparsity, grey-sheep instances, and cold-start scenarios, remains a challenge. Current state-of-the-art methods often fall short when addressing these issues simultaneously, resulting in performance degradation. In this paper, we introduce a real-time QoS prediction framework (called ARRQP) with a specific emphasis on improving resilience to anomalies in the data. ARRQP utilizes the power of graph convolution techniques to capture intricate relationships and dependencies among users and services, even when the data is limited or sparse. ARRQP integrates both contextual information and collaborative insights, enabling a comprehensive understanding of user-service interactions. By utilizing robust loss functions, ARRQP effectively reduces the impact of outliers during the model training. Additionally, we introduce a sparsity-resilient grey-sheep detection method, which is subsequently treated separately for QoS prediction. Furthermore, we address the cold-start problem by emphasizing contextual features over collaborative features. Experimental results on the benchmark WS-DREAM dataset demonstrate the framework's effectiveness in achieving accurate and timely QoS predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. Z. Zheng et al., “Web service QoS prediction via collaborative filtering: A survey,” IEEE Transactions on Services Computing, vol. 15, no. 4, pp. 2455–2472, 2022.
  2. S. H. Ghafouri et al., “A survey on web service QoS prediction methods,” IEEE TSC, vol. 15, no. 4, pp. 2439–2454, 2022.
  3. Z. Zheng et al., “QoS-aware web service recommendation by collaborative filtering,” IEEE TSC, vol. 4, no. 2, pp. 140–152, 2011.
  4. H. Sun et al., “Personalized web service recommendation via normal recovery collaborative filtering,” IEEE TSC, vol. 6, no. 4, pp. 573–579, 2013.
  5. G. Zou et al., “QoS-aware web service recommendation with reinforced collaborative filtering,” in ICSOC, vol. 11236, 2018, pp. 430–445.
  6. X. Wu et al., “Collaborative filtering service recommendation based on a novel similarity computation method,” IEEE TSC, vol. 10, no. 3, pp. 352–365, 2017.
  7. D. D. Lee et al., “Learning the Parts of Objects by Non-Negative Matrix Factorization,” Nature, vol. 401, no. 6755, p. 788, 1999.
  8. F. Ye et al., “Outlier-resilient web service QoS prediction,” in WWW, 2021, pp. 3099–3110.
  9. Z. Zheng et al., “Collaborative web service QoS prediction via neighborhood integrated matrix factorization,” IEEE TSC, vol. 6, no. 3, pp. 289–299, 2013.
  10. Z. Chen et al., “An accurate and efficient web service QoS prediction model with wide-range awareness,” FGCS, vol. 109, pp. 275–292, 2020.
  11. W. Lo et al., “An extended matrix factorization approach for QoS prediction in service selection,” in IEEE SCC, 2012, pp. 162–169.
  12. H. Wu et al., “Collaborative QoS prediction with context-sensitive matrix factorization,” FGCS, vol. 82, pp. 669–678, 2018.
  13. M. Li et al., “A two-tier service filtering model for web service QoS prediction,” IEEE Access, vol. 8, pp. 221 278–221 287, 2020.
  14. L. Shen et al., “Contexts enhance accuracy: On modeling context aware deep factorization machine for web API QoS prediction,” IEEE Access, vol. 8, pp. 165 551–165 569, 2020.
  15. Y. Wu et al., “An embedding based factorization machine approach for web service QoS prediction,” in ICSOC, vol. 10601, 2017, pp. 272–286.
  16. B. Gras et al., “Identifying Grey Sheep Users in Collaborative Filtering: A Distribution-Based Technique,” in UMAP.   ACM, 2016, p. 17–26.
  17. S. Chattopadhyay and A. Banerjee, “QoS value prediction using a combination of filtering method and neural network regression,” in ICSOC, vol. 11895, 2019, pp. 135–150.
  18. Y. Yin et al., “QoS prediction for service recommendation with features learning in mobile edge computing environment,” IEEE TCCN, vol. 6, no. 4, pp. 1136–1145, 2020.
  19. G. Zou et al., “Ncrl: Neighborhood-based collaborative residual learning for adaptive QoS prediction,” IEEE TSC, pp. 1–14, 2022.
  20. R. R. Chowdhury et al., “CAHPHF: context-aware hierarchical QoS prediction with hybrid filtering,” IEEE TSC, vol. 15, no. 4, pp. 2232–2247, 2022.
  21. S. Chattopadhyay et al., “OffDQ: An Offline Deep Learning Framework for QoS Prediction,” in WWW.   ACM, 2022, p. 1987–1996.
  22. Z. Wang et al., “Hsa-net: Hidden-state-aware networks for high-precision QoS prediction,” IEEE TPDS, vol. 33, no. 6, pp. 1421–1435, 2022.
  23. S. Kumar and S. Chattopadhyay, “TRQP: trust-aware real-time QoS prediction framework using graph-based learning,” in ICSOC, vol. 13740, 2022, pp. 143–152.
  24. J. Li et al., “Topology-aware neural model for highly accurate QoS prediction,” IEEE TPDS, vol. 33, no. 7, pp. 1538–1552, 2022.
  25. Y. Zhang et al., “Location-aware deep collaborative filtering for service recommendation,” IEEE TSMC, vol. 51, no. 6, pp. 3796–3807, 2021.
  26. M. I. Smahi et al., “A deep learning approach for collaborative prediction of web serviceQoS,” Serv. Oriented Comput. Appl., vol. 15, no. 1, pp. 5–20, 2021.
  27. H. Wu et al., “Multiple attributes QoS prediction via deep neural model with contexts,” IEEE TSC, vol. 14: 4, pp. 1084–1096, 2021.
  28. Z. Wang et al., “Location-aware feature interaction learning for web service recommendation,” in ICWS.   IEEE, 2020, pp. 232–239.
  29. W. Lo et al., “Collaborative Web Service QoS Prediction with Location-Based Regularization,” in IEEE ICWS, 2012, pp. 464–471.
  30. M. Wu, Q. Lu, and Y. Wang, “A multi-stack denoising autoencoder for QoS prediction,” in ICANN, 2022, pp. 757–768.
  31. Z. Jia et al., “Location-aware web service QoS prediction via deep collaborative filtering,” IEEE TCSS, pp. 1–12, 2022.
  32. Z. Chen et al., “Your neighbors alleviate cold-start: On geographical neighborhood influence to collaborative web service QoS prediction,” Knowl. Based Syst., vol. 138, pp. 188–201, 2017.
  33. Z. Zheng et al., “Investigating QoS of real-world web services,” IEEE TSC, vol. 7, no. 1, pp. 32–39, 2014.
  34. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in ICLR, 2017.
  35. P. Vincent et al., “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion,” J. Mach. Learn. Res., vol. 11, p. 3371–3408, dec 2010.
  36. F. T. Liu et al., “Isolation forest,” in 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 413–422.
  37. J. S. Breese et al., “Empirical analysis of predictive algorithms for collaborative filtering,” in UAI.   Morgan Kaufmann, 1998, pp. 43–52.
  38. B. M. Sarwar et al., “Item-based collaborative filtering recommendation algorithms,” in WWW.   ACM, 2001, pp. 285–295.
  39. J. Yin and Y. Xu, “Personalised QoS-based web service recommendation with service neighbourhood-enhanced matrix factorisation,” Int. J. Web Grid Serv., vol. 11, no. 1, pp. 39–56, 2015.
  40. M. Tang et al., “Location-aware collaborative filtering for QoS-based service recommendation,” in ICWS, 2012, pp. 202–209.
  41. Y. Koren et al., “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
  42. Y. Xu et al., “Context-aware QoS prediction for web service recommendation and selection,” Expert Syst. Appl., vol. 53, pp. 75–86, 2016.
  43. R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in NIPS.   Red Hook, NY, USA: Curran Associates Inc., 2007, p. 1257–1264.
  44. D. Yu et al., “Personalized QoS prediction for web services using latent factor models,” in SCC, 2014, pp. 107–114.
  45. X. Luo et al., “Generating highly accurate predictions for missing QoS data via aggregating nonnegative latent factor models,” IEEE TNNLS, vol. 27, no. 3, pp. 524–537, 2016.
  46. M. Tang et al., “Collaborative web service quality prediction via exploiting matrix factorization and network map,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 1, pp. 126–137, 2016.
  47. Y. Zhang et al., “Covering-based web service quality prediction via neighborhood-aware matrix factorization,” IEEE TSC, vol. 14, no. 5, pp. 1333–1344, 2021.
  48. D. Ryu et al., “Location-based web service QoS prediction via preference propagation to address cold start problem,” IEEE TSC, vol. 14, no. 3, pp. 736–746, 2021.
  49. Y. Yin et al., “QoS prediction for service recommendation with deep feature learning in edge computing environment,” Mob. Networks Appl., vol. 25, no. 2, pp. 391–401, 2020.
  50. G. Zou et al., “NDMF: neighborhood-integrated deep matrix factorization for service QoS prediction,” IEEE TNSM, vol. 17, no. 4, pp. 2717–2730, 2020.
  51. D. Wu et al., “A data-characteristic-aware latent factor model for web services QoS prediction,” IEEE TKDE, vol. 34, no. 6, pp. 2525–2538, 2022.
  52. X. He et al., “Neural collaborative filtering,” in WWW.   ACM, 2017, pp. 173–182.
  53. X. Zhu et al., “Similarity-maintaining privacy preservation and location-aware low-rank matrix factorization for QoS prediction based web service recommendation,” IEEE TSC, vol. 14, no. 3, pp. 889–902, 2021.
  54. S. Li et al., “A location and reputation aware matrix factorization approach for personalized quality of service prediction,” in ICWS.   IEEE, 2017, pp. 652–659.
  55. D. Wu et al., “A data-aware latent factor model for web service QoS prediction,” in PAKDD, vol. 11439, 2019, pp. 384–399.
  56. C. Wu et al., “QoS prediction of web services based on two-phase k-means clustering,” in IEEE ICWS, 2015, pp. 161–168.
  57. K. Su et al., “TAP: A personalized trust-aware QoS prediction approach for web service recommendation,” Knowl. Based Syst., vol. 115, pp. 55–65, 2017.
  58. W. Qiu et al., “Reputation-aware QoS value prediction of web services,” in IEEE SCC, 2013, pp. 41–48.
  59. K. Chen et al., “Trust-aware and location-based collaborative filtering for web service QoS prediction,” in IEEE COMPSAC, 2017, pp. 143–148.
  60. K. Qi, H. Hu, W. Song, J. Ge, and J. Lü, “Personalized qos prediction via matrix factorization integrated with neighborhood information,” in 2015 IEEE International Conference on Services Computing, 2015, pp. 186–193.
  61. P. Velickovic et al., “Graph attention networks,” in ICLR, 2018.
  62. M. Lin et al., “Research commentary: Too big to fail: Large samples and the p-value problem,” Information Systems Research, vol. 24, no. 4, pp. 906–917, 2013.
  63. Z. Chang, D. Ding, and Y. Xia, “A graph-based QoS prediction approach for web service recommendation,” Appl. Intell., vol. 51, no. 10, pp. 6728–6742, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Suraj Kumar (14 papers)
  2. Soumi Chattopadhyay (14 papers)