Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Type Theory based on Dependent Inductive and Coinductive Types (1605.02206v1)

Published 7 May 2016 in cs.LO

Abstract: We develop a dependent type theory that is based purely on inductive and coinductive types, and the corresponding recursion and corecursion principles. This results in a type theory with a small set of rules, while still being fairly expressive. For example, all well-known basic types and type formers that are needed for using this type theory as a logic are definable: propositional connectives, like falsity, conjunction, disjunction, and function space, dependent function space, existential quantification, equality, natural numbers, vectors etc. The reduction relation on terms consists solely of a rule for recursion and a rule for corecursion. The reduction relations for well-known types arise from that. To further support the introduction of this new type theory, we also prove fundamental properties of its term calculus. Most importantly, we prove subject reduction and strong normalisation of the reduction relation, which gives computational meaning to the terms. The presented type theory is based on ideas from categorical logic that have been investigated before by the first author, and it extends Hagino's categorical data types to a dependently typed setting. By basing the type theory on concepts from category theory we maintain the duality between inductive and coinductive types, and it allows us to describe, for example, the function space as a coinductive type.

Citations (13)

Summary

We haven't generated a summary for this paper yet.