Nonlinear Valuation under Collateral, Credit Risk and Funding Costs: A Numerical Case Study Extending Black-Scholes (1404.7314v1)
Abstract: We develop an arbitrage-free framework for consistent valuation of derivative trades with collateralization, counterparty credit gap risk, and funding costs, following the approach first proposed by Pallavicini and co-authors in 2011. Based on the risk-neutral pricing principle, we derive a general pricing equation where Credit, Debit, Liquidity and Funding Valuation Adjustments (CVA, DVA, LVA and FVA) are introduced by simply modifying the payout cash-flows of the deal. Funding costs and specific close-out procedures at default break the bilateral nature of the deal price and render the valuation problem a non-linear and recursive one. CVA and FVA are in general not really additive adjustments, and the risk for double counting is concrete. We introduce a new adjustment, called a Non-linearity Valuation Adjustment (NVA), to address double-counting. The theoretical risk free rate disappears from our final equations. The framework can be tailored also to CCP trading under initial and variation margins, as explained in detail in Brigo and Pallavicini (2014). In particular, we allow for asymmetric collateral and funding rates, replacement close-out and re-hypothecation. The valuation equation takes the form of a backward stochastic differential equation or semi-linear partial differential equation, and can be cast as a set of iterative equations that can be solved by least-squares Monte Carlo. We propose such a simulation algorithm in a case study involving a generalization of the benchmark model of Black and Scholes for option pricing. Our numerical results confirm that funding risk has a non-trivial impact on the deal price, and that double counting matters too. We conclude the article with an analysis of large scale implications of non-linearity of the pricing equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.