Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Reconstructability in the Stochastic Block Model (1404.6304v1)

Published 25 Apr 2014 in math.PR and cs.SI

Abstract: We consider the problem of clustering (or reconstruction) in the stochastic block model, in the regime where the average degree is constant. For the case of two clusters with equal sizes, recent results by Mossel, Neeman and Sly, and by Massoulie, show that reconstructability undergoes a phase transition at the Kesten-Stigum bound of $\lambda_22 d = 1$, where $\lambda_2$ is the second largest eigenvalue of a related stochastic matrix and $d$ is the average degree. In this paper, we address the general case of more than two clusters and/or unbalanced cluster sizes. Our main result is a sufficient condition for clustering to be impossible, which matches the existing result for two clusters of equal sizes. A key ingredient in our result is a new connection between non-reconstructability and non-distinguishability of the block model from an Erd\H{o}s-R\'enyi model with the same average degree. We also show that it is some times possible to reconstruct even when $\lambda_22 d < 1$. Our results provide evidence supporting a series of conjectures made by Decelle, Krzkala, Moore and Zdeborov\'a regarding reconstructability and distinguishability of stochastic block models (but do not settle them).

Citations (26)

Summary

We haven't generated a summary for this paper yet.