Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Backtracking Spectrum of Degree-Corrected Stochastic Block Models (1609.02487v2)

Published 8 Sep 2016 in math.PR, cs.LG, cs.SI, and stat.ML

Abstract: Motivated by community detection, we characterise the spectrum of the non-backtracking matrix $B$ in the Degree-Corrected Stochastic Block Model. Specifically, we consider a random graph on $n$ vertices partitioned into two equal-sized clusters. The vertices have i.i.d. weights ${ \phi_u }_{u=1}n$ with second moment $\Phi{(2)}$. The intra-cluster connection probability for vertices $u$ and $v$ is $\frac{\phi_u \phi_v}{n}a$ and the inter-cluster connection probability is $\frac{\phi_u \phi_v}{n}b$. We show that with high probability, the following holds: The leading eigenvalue of the non-backtracking matrix $B$ is asymptotic to $\rho = \frac{a+b}{2} \Phi{(2)}$. The second eigenvalue is asymptotic to $\mu_2 = \frac{a-b}{2} \Phi{(2)}$ when $\mu_22 > \rho$, but asymptotically bounded by $\sqrt{\rho}$ when $\mu_22 \leq \rho$. All the remaining eigenvalues are asymptotically bounded by $\sqrt{\rho}$. As a result, a clustering positively-correlated with the true communities can be obtained based on the second eigenvector of $B$ in the regime where $\mu_22 > \rho.$ In a previous work we obtained that detection is impossible when $\mu_22 < \rho,$ meaning that there occurs a phase-transition in the sparse regime of the Degree-Corrected Stochastic Block Model. As a corollary, we obtain that Degree-Corrected Erd\H{o}s-R\'enyi graphs asymptotically satisfy the graph Riemann hypothesis, a quasi-Ramanujan property. A by-product of our proof is a weak law of large numbers for local-functionals on Degree-Corrected Stochastic Block Models, which could be of independent interest.

Citations (20)

Summary

We haven't generated a summary for this paper yet.