Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimates of the best approximations and approximations of Fourier sums of classes of convolutions of periodic functions of not high smoothness in integral metrics (1404.5656v1)

Published 22 Apr 2014 in math.CA

Abstract: In metric of spaces $L_{s}, \ 1< s\leq\infty$, we obtain exact order estimates of best approximations and approximations by Fourier sums of classes of convolutions the periodic functions that belong to unit ball of space $L_{1}$, with generating kernel $\Psi_{\beta}(t)=\sum\limits_{k=1}{\infty}\psi(k)\cos(kt-\frac{\beta\pi}{2})$, $\beta\in\mathbb{R}$, whose coefficients $\psi(k)$ are such that product $\psi(n)n{1-\frac{1}{s}}$, $1<s\leq\infty$, can't tend to nought faster than every power function and besides, if $1<s<\infty$, then $\sum\limits_{k=1}{\infty}\psi{s}(k)k{s-2}<\infty$ and if $s=\infty$, then $\sum\limits_{k=1}{\infty}\psi(k)<\infty$.

Summary

We haven't generated a summary for this paper yet.