Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Order estimates of the best orthogonal trigonometric approximations of classes of convolutions of periodic functions of not high smoothness (1410.3858v1)

Published 14 Oct 2014 in math.CA

Abstract: We obtain order estimates for the best uniform orthogonal trigonometric approximations of $2\pi$-periodic functions, whose $(\psi,\beta)$-derivatives belong to unit balls of spaces $L_{p}, \ 1\leq p<\infty$, in case at consequences $\psi(k)$ are that product $\psi(n)n{\frac{1}{p}}$ can tend to zero slower than any power function and $\sum\limits_{k=1}{\infty}\psi{p'}(k)k{p'-2}<\infty$ when $1<p<\infty$, $\frac{1}{p}+\frac{1}{p'}=1$ and $\sum\limits_{k=1}{\infty}\psi(k)<\infty$ when $p=1$. We also establish the analogical estimates in $L_{s}$-metric, $1< s\leq \infty$, for classes of the summable $(\psi,\beta)$-differentiable functions, such that $\parallel f_{\beta}{\psi}\parallel_{1}\leq1$.

Summary

We haven't generated a summary for this paper yet.