Boundary effects on the supersymmetric sine-Gordon model through light-cone lattice approach (1404.3809v2)
Abstract: We discussed subspaces of the N=1 supersymmetric sine-Gordon model with Dirichlet boundaries through light-cone lattice regularization. In this paper, we showed, unlike the periodic boundary case, both of Neveu-Schwarz (NS) and Ramond (R) sectors of a superconformal field theory were obtained. Using a method of nonlinear integral equations for auxiliary functions defined by eigenvalues of transfer matrices, we found that an excitation state with an odd number of particles is allowed for a certain value of a boundary parameter even on a system consisting of an even number of sites. In a small-volume limit where conformal invariance shows up in the theory, we derived conformal dimensions of states constructed through the lattice-regularized theory. The result shows existence of the R sector, which cannot be obtained from the periodic system, while a winding number is restricted to an integer or a half-integer depending on boundary parameters.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.