Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

High-dimensional Lifshitz-type spacetimes, universal horizons and black holes in Hořava-Lifshitz gravity (1404.3413v4)

Published 13 Apr 2014 in hep-th, cond-mat.str-el, cond-mat.supr-con, gr-qc, and hep-ph

Abstract: In this paper, we present all $[(d+1)+1]$-dimensional static diagonal vacuum solutions of the non-projectable Ho\v{r}ava-Lifshitz gravity in the IR limit, and show that they give rise to very rich Lifshitz-type structures, depending on the choice of the free parameters of the solutions. These include the Lifshitz spacetimes with or without hyperscaling violation, Lifshitz solitons, and black holes. Remarkably, even the theory breaks explicitly the Lorentz symmetry and allows generically instantaneous propagations, universal horizons still exist, which serve as one-way membranes for signals with any large velocities. In particular, particles even with infinitely large velocities would just move around on these boundaries and cannot escape to infinity. Another remarkable feature appearing in the Lifshitz-type spacetimes is that the dynamical exponent $z$ can take its values only in the ranges $1 \le z < 2$ for $d \ge 3$ and $1 \le z <\infty$ for $d = 2$, due to the stability and ghost-free conditions of the theory.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.