Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates (1404.2817v3)

Published 10 Apr 2014 in math-ph, math.AP, math.FA, and math.MP

Abstract: We generalize the theorems of Stein--Tomas and Strichartz about surface restrictions of Fourier transforms to systems of orthonormal functions with an optimal dependence on the number of functions. We deduce the corresponding Strichartz bounds for solutions to Schr\"odinger equations up to the endpoint, thereby solving an open problem of Frank, Lewin, Lieb and Seiringer. We also prove uniform Sobolev estimates in Schatten spaces, extending the results of Kenig, Ruiz, and Sogge. We finally provide applications of these results to a Limiting Absorption Principle in Schatten spaces, to the well-posedness of the Hartree equation in Schatten spaces, to Lieb--Thirring bounds for eigenvalues of Schr\"odinger operators with complex potentials, and to Schatten properties of the scattering matrix.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.