Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Complete sets of circular, elliptic and bipolar harmonic vortices on a plane (1404.1487v2)

Published 5 Apr 2014 in physics.flu-dyn

Abstract: A class of harmonic solutions to the steady Euler equations for incompressible fluids is presented in two dimensions in circular, elliptic and bipolar coordinates. Since the velocity field is solenoidal in this case, it can be written as the curl of a vector potential, which will then satisfy Poisson's equation with vorticity as a source term. In regions with zero vorticity, Poisson's equation reduces to Laplace's equation, and this allows for the construction of harmonic potentials inside and outside circles and ellipses, depending on the coordinate system. The vector potential is normal to the coordinate plane, and is proportional to the scalar harmonic functions on the plane, thereby guaranteeing that the velocity field is also harmonic and is located on the coordinate plane. The components of the velocity field normal to either a circle or an ellipse are continuous, but the tangential components are discontinuous, so that, in effect, a vortex sheet is introduced at these boundaries. This discontinuity is a measure of the vorticity, normal to the plane and distributed harmonically along the perimeter of the respective circles or ellipses. An analytic expression for the streamlines is obtained which makes visualisation of vortices of various geometries and harmonicities possible. This approach also permits a reformulation of the notion of multipolarity of vortices in the traditional sense of a multipolar expansion of the Green's function for Poisson's equation. As an example of the applicability of this formulation to known vortical structures, Rankine vortices of different geometries are expressed in terms of harmonic functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.