Ruin probability in a risk model with a variable premium intensity and risky investments (1403.7150v1)
Abstract: We consider a generalization of the classical risk model when the premium intensity depends on the current surplus of an insurance company. All surplus is invested in the risky asset, the price of which follows a geometric Brownian motion. We get an exponential bound for the infinite-horizon ruin probability. To this end, we allow the surplus process to explode and investigate the question concerning the probability of explosion of the surplus process between claim arrivals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.