Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Weakly regular T2 symmetric spacetimes. The future causal geometry of Gowdy spaces (1403.6252v1)

Published 25 Mar 2014 in gr-qc and math.AP

Abstract: We investigate the future asymptotic behavior of Gowdy spacetimes on T3, when the metric satisfies weak regularity conditions, so that the metric coefficients (in suitable coordinates) are only in the Sobolev space H1 or have even weaker regularity. The authors recently introduced this class of spacetimes in the broader context of T2 symmetric spacetimes and established the existence of a global foliation by spacelike hypersurfaces when the time function is chosen to be the area of the surfaces of symmetry. In the present paper, we identify the global causal geometry of these spacetimes and, in particular, establish that weakly regular Gowdy spacetimes are future causally geodesically complete. This result extends a theorem by Ringstr\"om for metrics with sufficiently high regularity. We emphasize that our proof of the energy decay is based on an energy functional inspired by the Gowdy-to-Ernst transformation. In order to establish the geodesic completeness property, we prove a higher regularity property concerning the metric coefficients along timelike curves and we provide a novel analysis of the geodesic equation for Gowdy spacetimes, which does not require high-order regularity estimates. Even when sufficient regularity is assumed, our proof provides an alternative and shorter proof of the energy decay and of the geodesic completeness property for Gowdy spacetimes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.