Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Outlier eigenvalues for deformed i.i.d. random matrices (1403.6001v2)

Published 24 Mar 2014 in math.PR

Abstract: We consider a square random matrix of size N of the form A + Y where A is deterministic and Y has iid entries with variance 1/N. Under mild assumptions, as N grows, the empirical distribution of the eigenvalues of A+Y converges weakly to a limit probability measure \beta on the complex plane. This work is devoted to the study of the outlier eigenvalues, i.e. eigenvalues in the complement of the support of \beta. Even in the simplest cases, a variety of interesting phenomena can occur. As in earlier works, we give a sufficient condition to guarantee that outliers are stable and provide examples where their fluctuations vary with the particular distribution of the entries of Y or the Jordan decomposition of A. We also exhibit concrete examples where the outlier eigenvalues converge in distribution to the zeros of a Gaussian analytic function.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube