Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semidefinite Relaxation for Two Mixed Binary Quadratically Constrained Quadratic Programs: Algorithms and Approximation Bounds (1403.3998v1)

Published 17 Mar 2014 in math.OC

Abstract: This paper develops new semidefinite programming (SDP) relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs (MBQCQP) and analyzes their approximation performance. The first class of problem finds two minimum norm vectors in $N$-dimensional real or complex Euclidean space, such that $M$ out of $2M$ concave quadratic functions are satisfied. By employing a special randomized rounding procedure, we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by $\frac{54M2}{\pi}$ in the real case and by $\frac{24M}{\sqrt{\pi}}$ in the complex case. The second class of problem finds a series of minimum norm vectors subject to a set of quadratic constraints and a cardinality constraint with both binary and continuous variables. We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.