Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Classical and Umbral Moonshine: Connections and $p$-adic Properties (1403.3712v6)

Published 14 Mar 2014 in math.NT, hep-th, and math.RT

Abstract: The classical theory of monstrous moonshine describes the unexpected connection between the representation theory of the monster group $M$, the largest of the simple sporadic groups, and certain modular functions, called Hauptmodln. In particular, the $n$-th Fourier coefficient of Klein's $j$-function is the dimension of the grade $n$ part of a special infinite dimensional representation $V$ of the monster group. More generally the coefficients of Hauptmoduln are graded traces $T_g$ of $g \in M$ acting on $V$. Similar phenomena have been shown to hold for the Matthieu group $M_{24}$, but instead of modular functions, mock modular forms must be used. This has been conjecturally generalized even further, to umbral moonshine, which associates to each of the 23 Niemeier lattices a finite group, infinite dimensional representation, and mock modular form. We use generalized Borcherds products to relate monstrous moonshine and umbral moonshine. Namely, we use mock modular forms from umbral moonshine to construct via generalized Borcherds products rational functions of the Hauptmoduln $T_g$ from monstrous moonshine. This allows us to associate to each pure $A$-type Niemeier lattice a conjugacy class $g$ of the monster group, and gives rise to identities relating dimensions of representations from umbral moonshine to values of $T_g$. We also show that the logarithmic derivatives of the Borcherds products are $p$-adic modular forms for certain primes $p$ and describe some of the resulting properties of their coefficients modulo $p$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube