Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning the Latent State Space of Time-Varying Graphs (1403.3707v1)

Published 14 Mar 2014 in cs.SI, cs.LG, physics.soc-ph, and stat.ML

Abstract: From social networks to Internet applications, a wide variety of electronic communication tools are producing streams of graph data; where the nodes represent users and the edges represent the contacts between them over time. This has led to an increased interest in mechanisms to model the dynamic structure of time-varying graphs. In this work, we develop a framework for learning the latent state space of a time-varying email graph. We show how the framework can be used to find subsequences that correspond to global real-time events in the Email graph (e.g. vacations, breaks, ...etc.). These events impact the underlying graph process to make its characteristics non-stationary. Within the framework, we compare two different representations of the temporal relationships; discrete vs. probabilistic. We use the two representations as inputs to a mixture model to learn the latent state transitions that correspond to important changes in the Email graph structure over time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.