Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Estimation using Bayesian Consensus Filtering (1403.3117v3)

Published 12 Mar 2014 in math.OC, cs.IT, math.IT, and math.PR

Abstract: We present the Bayesian consensus filter (BCF) for tracking a moving target using a networked group of sensing agents and achieving consensus on the best estimate of the probability distributions of the target's states. Our BCF framework can incorporate nonlinear target dynamic models, heterogeneous nonlinear measurement models, non-Gaussian uncertainties, and higher-order moments of the locally estimated posterior probability distribution of the target's states obtained using Bayesian filters. If the agents combine their estimated posterior probability distributions using a logarithmic opinion pool, then the sum of Kullback--Leibler divergences between the consensual probability distribution and the local posterior probability distributions is minimized. Rigorous stability and convergence results for the proposed BCF algorithm with single or multiple consensus loops are presented. Communication of probability distributions and computational methods for implementing the BCF algorithm are discussed along with a numerical example.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.