Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Fundamental Gap for a Class of Schrödinger Operators on Path and Hypercube Graphs (1403.1473v1)

Published 6 Mar 2014 in math-ph, math.MP, and quant-ph

Abstract: We consider the difference between the two lowest eigenvalues (the fundamental gap) of a Schr\"{o}dinger operator acting on a class of graphs. In particular, we derive tight bounds for the gap of Schr\"{o}dinger operators with convex potentials acting on the path graph. Additionally, for the hypercube graph, we derive a tight bound for the gap of Schr\"{o}dinger operators with convex potentials dependent only upon vertex Hamming weight. Our proof makes use of tools from the literature of the fundamental gap theorem as proved in the continuum combined with techniques unique to the discrete case. We prove the tight bound for the hypercube graph as a corollary to our path graph results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.