High-dimensional tests for spherical location and spiked covariance (1402.2823v1)
Abstract: Rotationally symmetric distributions on the p-dimensional unit hypersphere, extremely popular in directional statistics, involve a location parameter theta that indicates the direction of the symmetry axis. The most classical way of addressing the spherical location problem H_0:theta=theta_0, with theta_0 a fixed location, is the so-called Watson test, which is based on the sample mean of the observations. This test enjoys many desirable properties, but its implementation requires the sample size n to be large compared to the dimension p. This is a severe limitation, since more and more problems nowadays involve high-dimensional directional data (e.g., in genetics or text mining). In this work, we therefore introduce a modified Watson statistic that can cope with high-dimensionality. We derive its asymptotic null distribution as both n and p go to infinity. This is achieved in a universal asymptotic framework that allows p to go to infinity arbitrarily fast (or slowly) as a function of n. We further show that our results also provide high-dimensional tests for a problem that has recently attracted much attention, namely that of testing that the covariance matrix of a multinormal distribution has a "theta_0-spiked" structure. Finally, a Monte Carlo simulation study corroborates our asymptotic results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.