Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Fully commutative elements in finite and affine Coxeter groups (1402.2166v1)

Published 10 Feb 2014 in math.CO and math.RA

Abstract: An element of a Coxeter group $W$ is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge, in particular in the finite case. They index naturally a basis of the generalized Temperley--Lieb algebra. In this work we deal with any finite or affine Coxeter group $W$, and we give explicit descriptions of fully commutative elements. Using our characterizations we then enumerate these elements according to their Coxeter length, and find in particular that the corrresponding growth sequence is ultimately periodic in each type. When the sequence is infinite, this implies that the associated Temperley--Lieb algebra has linear growth.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.