Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Orthogonal Tensor Diagonalization (1402.1673v3)

Published 7 Feb 2014 in cs.NA and stat.OT

Abstract: Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It is generalization of approximate joint diagonalization (AJD) of a set of matrices. In particular, we derive (1) a new algorithm for symmetric AJD, which is called two-sided symmetric diagonalization of order-three tensor, (2) a similar algorithm for non-symmetric AJD, also called general two-sided diagonalization of an order-3 tensor, and (3) an algorithm for three-sided diagonalization of order-3 or order-4 tensors. The latter two algorithms may serve for canonical polyadic (CP) tensor decomposition, and they can outperform other CP tensor decomposition methods in terms of computational speed under the restriction that the tensor rank does not exceed the tensor multilinear rank. Finally, we propose (4) similar algorithms for tensor block diagonalization, which is related to the tensor block-term decomposition.

Citations (16)

Summary

We haven't generated a summary for this paper yet.