Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition (1809.00535v1)

Published 3 Sep 2018 in cs.NA

Abstract: The Canonical Polyadic decomposition (CPD) is a convenient and intuitive tool for tensor factorization; however, for higher-order tensors, it often exhibits high computational cost and permutation of tensor entries, these undesirable effects grow exponentially with the tensor order. Prior compression of tensor in-hand can reduce the computational cost of CPD, but this is only applicable when the rank $R$ of the decomposition does not exceed the tensor dimensions. To resolve these issues, we present a novel method for CPD of higher-order tensors, which rests upon a simple tensor network of representative inter-connected core tensors of orders not higher than 3. For rigour, we develop an exact conversion scheme from the core tensors to the factor matrices in CPD, and an iterative algorithm with low complexity to estimate these factor matrices for the inexact case. Comprehensive simulations over a variety of scenarios support the approach.

Citations (20)

Summary

We haven't generated a summary for this paper yet.