Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized Gaussian Random Fields using hidden selections (1402.1144v1)

Published 5 Feb 2014 in stat.ME

Abstract: We study non-Gaussian random fields constructed by the selection normal distribution, and we term them selection Gaussian random fields. The selection Gaussian random field can capture skewness, multi-modality, and to some extend heavy tails in the marginal distribution. We present a Metropolis-Hastings algorithm for efficient simulation of realizations from the random field, and a numerical algorithm for estimating model parameters by maximum likelihood. The algorithms are demonstrated and evaluated on synthetic cases and on a real seismic data set from the North Sea. In the North Sea data set we are able to reduce the mean square prediction error by 20-40% compared to a Gaussian model, and we obtain more reliable prediction intervals.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.