Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

F-theory on Genus-One Fibrations (1401.7844v2)

Published 30 Jan 2014 in hep-th and math.AG

Abstract: We argue that M-theory compactified on an arbitrary genus-one fibration, that is, an elliptic fibration which need not have a section, always has an F-theory limit when the area of the genus-one fiber approaches zero. Such genus-one fibrations can be easily constructed as toric hypersurfaces, and various $SU(5)\times U(1)n$ and $E_6$ models are presented as examples. To each genus-one fibration one can associate a $\tau$-function on the base as well as an $SL(2,\mathbb{Z})$ representation which together define the IIB axio-dilaton and 7-brane content of the theory. The set of genus-one fibrations with the same $\tau$-function and $SL(2,\mathbb{Z})$ representation, known as the Tate-Shafarevich group, supplies an important degree of freedom in the corresponding F-theory model which has not been studied carefully until now. Six-dimensional anomaly cancellation as well as Witten's zero-mode count on wrapped branes both imply corrections to the usual F-theory dictionary for some of these models. In particular, neutral hypermultiplets which are localized at codimension-two fibers can arise. (All previous known examples of localized hypermultiplets were charged under the gauge group of the theory.) Finally, in the absence of a section some novel monodromies of Kodaira fibers are allowed which lead to new breaking patterns of non-Abelian gauge groups.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.