Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$1/f$ Spectrum and 1-Stable Law in One-Dimensional Intermittent Map with Uniform Invariant Measure and Nekhoroshev Stability (1401.6377v1)

Published 24 Jan 2014 in nlin.CD

Abstract: We investigate ergodic properties of a one-dimensional intermittent map that has not only an indifferent fixed point but also a singular structure such that a uniform measure is invariant under mapping. The most striking aspect of our model is that stagnant motion around the indifferent fixed point is induced by the log-Weibull law, which is derived from Nekhoroshev stability in the context of nearly-integrable Hamiltonian systems. Using renewal analysis, we derive a logarithmic inverse power decay of the correlation function and a $1/\omega$-like power spectral density. We also derive the so-called 1-stable law as a component of the time-average distribution of a simple observable function. This distributional law enables us to calculate a logarithmic inverse power law of large deviations. Numerical results confirm these analytical results. Finally, we discuss the relationship between the parameters of our model and the degrees of freedom in nearly-integrable Hamiltonian systems.

Summary

We haven't generated a summary for this paper yet.