Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed dual gradient methods and error bound conditions (1401.4398v2)

Published 17 Jan 2014 in math.OC

Abstract: In this paper we propose distributed dual gradient algorithms for linearly constrained separable convex problems and analyze their rate of convergence under different assumptions. Under the strong convexity assumption on the primal objective function we propose two distributed dual fast gradient schemes for which we prove sublinear rate of convergence for dual suboptimality but also primal suboptimality and feasibility violation for an average primal sequence or for the last generated primal iterate. Under the additional assumption of Lipshitz continuity of the gradient of the primal objective function we prove a global error bound type property for the dual problem and then we analyze a dual gradient scheme for which we derive global linear rate of convergence for both dual and primal suboptimality and primal feasibility violation. We also provide numerical simulations on optimal power flow problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube