Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Behavior of the Pseudo-Covariance Matrix of a Robust State Estimator with Intermittent Measurements (1401.4023v1)

Published 16 Jan 2014 in cs.SY, cs.IT, and math.IT

Abstract: Ergodic properties and asymptotic stationarity are investigated in this paper for the pseudo-covariance matrix (PCM) of a recursive state estimator which is robust against parametric uncertainties and is based on plant output measurements that may be randomly dropped. When the measurement dropping process is described by a Markov chain and the modified plant is both controllable and observable, it is proved that if the dropping probability is less than 1, this PCM converges to a stationary distribution that is independent of its initial values. A convergence rate is also provided. In addition, it has also been made clear that when the initial value of the PCM is set to the stabilizing solution of the algebraic Riccati equation related to the robust state estimator without measurement dropping, this PCM converges to an ergodic process. Based on these results, two approximations are derived for the probability distribution function of the stationary PCM, as well as a bound of approximation errors. A numerical example is provided to illustrate the obtained theoretical results.

Summary

We haven't generated a summary for this paper yet.