Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Recursive State Estimation with Random Measurements Droppings

Published 16 Jan 2014 in cs.SY | (1401.4020v1)

Abstract: A recursive state estimation procedure is derived for a linear time varying system with both parametric uncertainties and stochastic measurement droppings. This estimator has a similar form as that of the Kalman filter with intermittent observations, but its parameters should be adjusted when a plant output measurement arrives. A new recursive form is derived for the pseudo-covariance matrix of estimation errors, which plays important roles in analyzing its asymptotic properties. Based on a Riemannian metric for positive definite matrices, some necessary and sufficient conditions have been obtained for the strict contractiveness of an iteration of this recursion. It has also been proved that under some controllability and observability conditions, as well as some weak requirements on measurement arrival probability, the gain matrix of this recursive robust state estimator converges in probability one to a stationary distribution. Numerical simulation results show that estimation accuracy of the suggested procedure is more robust against parametric modelling errors than the Kalman filter.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.