Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From "Identical" to "Similar": Fusing Retrieved Lists Based on Inter-Document Similarities (1401.3883v1)

Published 16 Jan 2014 in cs.IR

Abstract: Methods for fusing document lists that were retrieved in response to a query often utilize the retrieval scores and/or ranks of documents in the lists. We present a novel fusion approach that is based on using, in addition, information induced from inter-document similarities. Specifically, our methods let similar documents from different lists provide relevance-status support to each other. We use a graph-based method to model relevance-status propagation between documents. The propagation is governed by inter-document-similarities and by retrieval scores of documents in the lists. Empirical evaluation demonstrates the effectiveness of our methods in fusing TREC runs. The performance of our most effective methods transcends that of effective fusion methods that utilize only retrieval scores or ranks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.