Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Respect My Authority! HITS Without Hyperlinks, Utilizing Cluster-Based Language Models (0804.3599v1)

Published 22 Apr 2008 in cs.IR and cs.CL

Abstract: We present an approach to improving the precision of an initial document ranking wherein we utilize cluster information within a graph-based framework. The main idea is to perform re-ranking based on centrality within bipartite graphs of documents (on one side) and clusters (on the other side), on the premise that these are mutually reinforcing entities. Links between entities are created via consideration of LLMs induced from them. We find that our cluster-document graphs give rise to much better retrieval performance than previously proposed document-only graphs do. For example, authority-based re-ranking of documents via a HITS-style cluster-based approach outperforms a previously-proposed PageRank-inspired algorithm applied to solely-document graphs. Moreover, we also show that computing authority scores for clusters constitutes an effective method for identifying clusters containing a large percentage of relevant documents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Oren Kurland (17 papers)
  2. Lillian Lee (40 papers)
Citations (116)

Summary

We haven't generated a summary for this paper yet.