Papers
Topics
Authors
Recent
Search
2000 character limit reached

Geodesics in Brownian surfaces (Brownian maps)

Published 15 Jan 2014 in math.PR | (1401.3602v3)

Abstract: We define a class a metric spaces we call Brownian surfaces, arising as the scaling limits of random maps on general orientable surfaces with a boundary and we study the geodesics from a uniformly chosen random point. These metric spaces generalize the well-known Brownian map and our results generalize the properties shown by Le Gall on geodesics in the latter space. We use a different approach based on two ingredients: we first study typical geodesics and then all geodesics by an "entrapment" strategy. In particular, we give geometrical characterizations of some subsets of interest, in terms of geodesics, boundary points and concatenations of geodesics that are not homotopic to 0.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.