Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Kimi K2 145 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
Grok 4 Pro
2000 character limit reached

First-passage dynamics of obstructed tracer particle diffusion in one-dimensional systems (1401.2933v2)

Published 13 Jan 2014 in cond-mat.stat-mech

Abstract: The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article we generalise this system and investigate first-passage properties of a tracer particle when flanked by crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates $k_{\rm off}$ ($k_{\rm on}$). The tracer particle is restricted to diffuse with rate $k_D$ on the lattice. Such a model is relevant for the understanding of gene regulation where regulatory proteins are searching for specific binding sites ona crowded DNA. We quantify the first-passage time distribution, $f(t)$ ($t$ is time), numerically using the Gillespie algorithm, and estimate it analytically. In terms of our key parameter, the unbinding rate $k_{\rm off}$, we study the bridging of two known regimes: (i) when unbinding is frequent the particles may effectively pass each other and we recover the standard single particle result $f(t)\sim t{-3/2}$ with a renormalized diffusion constant, (ii) when unbinding is rare we recover well-known single-file diffusion result $f(t)\sim t{-7/4}$. The intermediate cases display rich dynamics, with the characteristic $f(t)$-peak and the long-time power-law slope both being sensitive to $k_{\rm off}$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube