Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum curves for the enumeration of ribbon graphs and hypermaps (1312.6869v1)

Published 24 Dec 2013 in math.GT, math-ph, math.AG, and math.MP

Abstract: The topological recursion of Eynard and Orantin governs a variety of problems in enumerative geometry and mathematical physics. The recursion uses the data of a spectral curve to define an infinite family of multidifferentials. It has been conjectured that, under certain conditions, the spectral curve possesses a non-commutative quantisation whose associated differential operator annihilates the partition function for the spectral curve. In this paper, we determine the quantum curves and partition functions for an infinite sequence of enumerative problems involving generalisations of ribbon graphs known as hypermaps. These results give rise to an explicit conjecture relating hypermap enumeration to the topological recursion and we provide evidence to support this conjecture.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)