A scattering matrix formulation of the topological index of interacting fermions in one-dimensional superconductors (1312.6367v1)
Abstract: We construct a scattering matrix formulation for the topological classification of one-dimensional superconductors with effective time reversal symmetry in the presence of interactions. For a closed geometry, Fidkowski and Kitaev have shown that such systems have a $\mathbb{Z}8$ topological classification. We show that in the weak coupling limit, these systems retain a unitary scattering matrix at zero temperature, with a topological index given by the trace of the Andreev reflection matrix, $\mbox{tr}\, r{\rm he}$. With interactions, $\mbox{tr}\, r_{\rm he}$ generically takes on the finite set of values $0$, $\pm 1$, $\pm 2$, $\pm 3$, and $\pm 4$. We show that the two topologically equivalent phases with $\mbox{tr}\, r_{\rm he} = \pm 4$ support emergent many-body end states, which we identify to be a topologically protected Kondo-like resonance. The path in phase space that connects these equivalent phases crosses a non-fermi liquid fixed point where a multiple channel Kondo effect develops. Our results connect the topological index to transport properties, thereby highlighting the experimental signatures of interacting topological phases in one dimension.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.